Dr. Collins shares Dieting and Weight-Loss Information
Dr. Collins makes Brief Positive Statements for Inspiration and Motivation.
Healthy Home Cooking by Dr. Collins for a Low-Calorie Lifestyle.
A place for Grandbabies to visit with their online Grandma.
Maybe Fat People are NOT Doing it Wrong - POSTED ON: Feb 20, 2016
The women in this picture are different shapes and sizes, but all are professional athletes at the peak. It’s not a one-size-fits-all world. Every Diet works for Somebody, but not Every Diet works for Everybody. Also, the evidence seems to suggest that Some people can’t lose AND MAINTAIN WEIGHT-LOSS LONG-TERM on Any Diet. Although as Human Beings, all people share certain physical characteristics, we have genetic variations which make us different from each other. There are tall people and short people, males and females. People can have different hair and eye and skin colors. Our facial features differ. There are also natural differences in body types. Some people tend to be a pear-shape, - naturally carrying more weight in their bottom half. Others tend toward an apple-shape, naturally carrying more weight around the middle of their bodies. Some bodies are shaped like an hour-glass, with a larger top and bottom divided by a small middle. Some bodies are rather straight with bodies that tend to be the same size from top to bottom. Some are more triangular, having a smaller bottom half and carrying most of their weight in their upper half, chest, shoulders, arms. Some people are naturally more muscular. Some people have a stocky build, while others are naturally lean. All of these differences are based on differences in Genetics, and mostly people understand and accept these differences. So why is it so hard for our society to Understand, Believe, and Accept that …..just like those other differences,….. the bodies of some people naturally work to collect fat, while the bodies of other people naturally work to stay thin. And, that just like some people are supposed to have blue eyes and others to have brown eyes, some people are supposed to be fat, while other people are supposed to be thin. Yet, …as is stated in the compelling article posted below,… our Society’s belief is that a Fat Body is Evidence that a person is Doing Life Wrong.
Or Maybe Fat People Aren’t Doing It All Wrong .....excerpt from article.... by Ragen Chastain - danceswithfat Every day we are lied to about dieting, weight loss, weight, and health by people who profit from the lies. We are told that anyone who tries hard enough can lose weight and maintain that weight loss. This despite the fact that there isn’t a single study, anywhere, in which more than a tiny fraction of the subjects were able to do so. Still, anyone who claims to have a method of weight loss that works seems to be able to get airtime, and to get their idea reported in the news as if it’s fact, despite the actual fact that there is simply no evidence to suggest that it will work. There are obvious issues with this. The most obvious is that it contributes to a world where the governments enthusiastically oppress fat people and try to recruit others to do the same. It sets fat people up for a life of yo-yo dieting, and putting the lives we want on hold until we get thin, which will never happen, thus ruining our lives and making the weight loss industry money (to the tune of over $60 BILLION a year,) selling a product that they know doesn’t work. But there are also consequences that are more insidious. With all the weight loss plans out there we are told all kinds of things will lead to weight loss – the gym, “healthy” eating, vegetarian diet, boot camp workouts, vegan diet, crossfit, paleo diets, yoga, pilates, yogalates, intuitive eating, meditation, you name it and I can pretty much guarantee that someone has made diet out of it. Of course the truth is that fat people participate in all of these things and remain fat, and that there is no reason to believe that any of them will lead to long-term weight loss. (And let me be clear that not everyone who is involved in these things sells them as a diet, but there are people who do.) But such is our trust in the diet industry that instead of using the opportunity to question stereotypes and beliefs about weight loss and body size, people simply claim that fat people must be “doing it wrong.” If we are fat athletes, we must be doing athletics wrong (because, we’re told, the only “good” outcome of being involved in fitness/movement/athletics is a thin body.) If we’re fat vegetarians we must be doing that wrong. If we’re doing a diet but not getting thin we must not be able to properly measure a quarter cup of rice. If we’re meditating but still fat we must be doing meditation wrong. The belief is that a fat body is evidence that we are doing life wrong. And that’s oppressive, and it’s bullshit. If you did something to get thin and you didn’t get thin (especially if you lost weight and then gained it back) then welcome to the “Almost Everyone Club,” you should know that what happened to you is exactly what we would expect to happen based on all the research that exists.
Weight Loss Goals - POSTED ON: Feb 19, 2016
Dreams and Goals are good things to have. Most accomplishments start out as just a dream existing in the mind. However, Dreams and Goals need to be based on REALITY, which means they need to be based upon a sensible and practical idea of what can be achieved or expected. While we can appreciate the Value of Dreaming about Future Goals, an emaciated Rhinoceros will never become a sleek and lean Unicorn. The Reality is that no amount of Diet or Exercise will ever turn a Morbidly Obese body into a Naturally Thin body.
It’s not a one-size-fits-all world. I’ve posted many articles here at DietHobby about the genetic differences of various body types. I’ve also posted many articles about the differences between bodies of the “naturally thin” who have always been at or near a “normal” BMI weight; bodies of people who have spent a few years or so being at a BMI of “overweight” or “borderline obesity”; and bodies of people who have spent many years with a BMI of “Morbid” or “Severe” obesity. You can find all of these articles in DietHobby’s ARCHIVES. People often have magical thinking about thinness. It is common to become invested in The Fantasy of Being Thin. The Fantasy of Being Thin is not just about becoming small enough to be perceived as more acceptable. It's Not about appearing indistinguishable from “naturally” thin people, while one wears clothing that flatter one’s body type, and which also serves to conceal existing body flaws such as loose, flabby, hanging skin, stretch marks, scars, wrinkles and cellulite etc. It’s a dream about one’s body morphing into that of a Goddess…, achieving the appearance of a supermodel, looking “fit”, lean with taunt, smooth skin, firm uplifted breasts, flat stomach, tiny waist, firm bouncy buttocks, slender thighs, and long lean legs. It is often, also, about becoming an entirely different person …one with far more courage, confidence, and luck than the Fat You has. It’s not just, “When I’m thin, I’ll look good when I’m dressed well.” It’s “When I’m thin, I’ll look really good in a skimpy bathing suit.”….And that fantasy goes on to include changes in our personal characteristics …. “When I’m thin, I will be the kind of person who struts down the beach in a bikini, making men weep.” … “When I’m thin, I won’t be depressed anymore.” .... “When I’m thin, I’ll start liking exercise.” ..... "When I’m thin, I’ll begin loving the outdoors.” ...... “When I’m thin, I’ll be more extroverted and charismatic, and have more friends than I know what to do with.” We must overcome The Fantasy of Being Thin in order to be able to do what it takes to successfully maintain a large weight-loss long-term. The biggest cost of dieting for weight-loss is not the financial cost. It is the high emotional price of false hope. Many people have been wearied and traumatized by having their hopes repeatedly raised and dashed by the False Claims made by the Diet Industry.
I currently believe, and I think it is necessary to point out,….that once one’s obesity has become severe and long-term, no treatments currently exist that will dramatically influence the natural course of that morbidly obese body’s greatly increased set point. This means that, for such people, maintenance of weight-loss will always take a great deal of hard work. I have also discovered that it takes a lot of Love for one’s own thinner body, along with a personal Acceptance of the …. what-some-would-consider-to-be-“flaws” ….. existing within that formerly-fat-body, to summon the sustained strength to continually follow-through with the changed eating behaviors which are required for long-term maintenance of a “reduced obese” body. Even after 10+ years of maintaining a “normal” weight, my body continually fights to return back to its higher weight through via increased physical hunger, increased appetite, reduced basic metabolic rate and so forth. There will always be a vast physical difference between an emaciated Rhinoceros and a naturally sleek and lean Unicorn. There are also many physical differences between human beings. Realistic expectations can greatly help with achieving successful weight-loss and maintenance of that weight-loss. I have a clear idea of my own personal weight-loss goals. Like most people, I also have an image of how I want to look and feel at my Ideal Weight Goal, and I have an intense desire to BE there - not only Reach that Goal, but Stay there Forever. Here is a picture showing my own personal ideal Weight Maintenance Range.
However, what I’ve learned is that Life involves Balance and Trade-offs which are based on what each of us “brings to the table” (genetically & otherwise), as well as what each of us values the most. There are many different definitions of what is individually “beautiful” and also of what is “healthy”, and ….for many people here on earth,….. a BMI number doesn’t define either beauty or health. Not only do people define Beauty & Health differently, there are many differences in how highly various Food and Eating issues are valued within each individual life. Advertising, the media, and the Diet Industry tells us that “thin” is the most beautiful and healthiest body type. Most people who reach a weight at the bottom of their BMI range would be considered “thin”, and some might even consider those people to be the “healthiest” that they could be, because of their low weight. However, there are others who define “Beauty” and “Health” differently, and THOSE people would prefer and choose different weight-goals. For me, maintaining a large weight-loss involves striking a balance between how I want my body to look and to feel at a specific size; AND how little food I am prepared to eat indefinitely. Personally, I place a high value of keeping my body somewhere inside my “normal” BMI range, and I am willing to eat very small amounts of food indefinitely to do so. However, …. if the only way I could maintain that body size was to eat only 5 bites of food twice a day for the rest of my life, would I be willing to do that??? ….If the only way I could maintain that body size was to entirely eliminate specific foods from my life … whether it be sweets, carbs - refined or otherwise, meat, dairy products like cheese or butter?????? ..................… No!!! …...................... Neither of those things would be an acceptable trade-off for me. It’s a matter of values. In order to be able to moderately eat those foods, I would choose to accept being a larger size. ................How moderate? ................How much larger? That’s where the individually balancing of values comes into play. The video below demonstrates an ongoing problem with research (and popular thinking) on weight and health.
It works for YOU, but.... - POSTED ON: Feb 18, 2016
Poor Victoria - POSTED ON: Feb 17, 2016
The Currency of Weight is Calories - POSTED ON: Feb 16, 2016
From a weight management perspective, the CURRENCY of weight is calories. Although exchange rates vary between individuals, as well as between different kinds of food, what remains consistent is that each of us will always need our own personal calorie deficit to lose, and own own personal calorie surplus to gain. Although calorie counting will always be approximate, at this present time, the term “Calorie” is the only useful way we have to mentally define and describe energy use. This is true, even though:
Calories in physics are simple, but not in physiology. Below is a rather thorough article which demonstrates the many difficulties that are involved when considering calorie counting as an “accurate” weight-loss or weight-maintenance tool.
Why the calorie is broken by Nicola Twilley, and Cynthia Graber “For me, a calorie is a unit of measurement that’s a real pain in the rear.” Bo Nash is 38. He lives in Arlington, Texas, where he’s a technology director for a textbook publisher. And he’s 5’10” and 245 lbs – which means he is classed as obese. In an effort to lose weight, Nash uses an app to record the calories he consumes and a Fitbit band to track the energy he expends. These tools bring an apparent precision: Nash can quantify the calories in each cracker crunched and stair climbed. But when it comes to weight gain, he finds that not all calories are equal. How much weight he gains or loses seems to depend less on the total number of calories, and more on where the calories come from and how he consumes them. The unit, he says, has a “nebulous quality to it”. Tara Haelle is also obese. She had her second son on St Patrick’s Day in 2014, and hasn’t been able to lose the 70 lbs she gained during pregnancy. Haelle is a freelance science journalist, based in Illinois. She understands the science of weight loss, but, like Nash, doesn’t see it translate into practice. “It makes sense from a mathematical and scientific and even visceral level that what you put in and what you take out, measured in the discrete unit of the calorie, should balance,” says Haelle. “But it doesn’t seem to work that way.” Nash and Haelle are in good company: more than two-thirds of American adults are overweight or obese. For many of them, the cure is diet: one in three are attempting to lose weight in this way at any given moment. Yet there is ample evidence that diets rarely lead to sustained weight loss. These are expensive failures. This inability to curb the extraordinary prevalence of obesity costs the United States more than $147 billion in healthcare, as well as $4.3 billion in job absenteeism and yet more in lost productivity. At the heart of this issue is a single unit of measurement – the calorie – and some seemingly straightforward arithmetic. “To lose weight, you must use up more calories than you take in,” according to the Centers for Disease Control and Prevention. Dieters like Nash and Haelle could eat all their meals at McDonald’s and still lose weight, provided they burn enough calories, says Marion Nestle, professor of nutrition, food studies and public health at New York University. “Really, that’s all it takes.” But Nash and Haelle do not find weight control so simple. And part of the problem goes way beyond individual self-control. The numbers logged in Nash’s Fitbit, or printed on the food labels that Haelle reads religiously, are at best good guesses. Worse yet, as scientists are increasingly finding, some of those calorie counts are flat-out wrong – off by more than enough, for instance, to wipe out the calories Haelle burns by running an extra mile on a treadmill. A calorie isn’t just a calorie. And our mistaken faith in the power of this seemingly simple measurement may be hindering the fight against obesity. The process of counting calories begins in an anonymous office block in Maryland. The building is home to the Beltsville Human Nutrition Research Center, a facility run by the US Department of Agriculture. When we visit, the kitchen staff are preparing dinner for people enrolled in a study. Plastic dinner trays are laid out with meatloaf, mashed potatoes, corn, brown bread, a chocolate-chip scone, vanilla yoghurt and a can of tomato juice. The staff weigh and bag each item, sometimes adding an extra two-centimetre sliver of bread to ensure a tray’s contents add up to the exact calorie requirements of each participant. “We actually get compliments about the food,” says David Baer, a supervisory research physiologist with the Department. The work that Baer and colleagues do draws on centuries-old techniques. Nestle traces modern attempts to understand food and energy back to a French aristocrat and chemist named Antoine Lavoisier. In the early 1780s, Lavoisier developed a triple-walled metal canister large enough to house a guinea pig. Inside the walls was a layer of ice. Lavoisier knew how much energy was required to melt ice, so he could estimate the heat the animal emitted by measuring the amount of water that dripped from the canister. What Lavoisier didn’t realise – and never had time to find out; he was put to the guillotine during the Revolution – was that measuring the heat emitted by his guinea pigs was a way to estimate the amount of energy they had extracted from the food they were digesting. Until recently, the scientists at Beltsville used what was essentially a scaled-up version of Lavoisier’s canister to estimate the energy used by humans: a small room in which a person could sleep, eat, excrete, and walk on a treadmill, while temperature sensors embedded in the walls measured the heat given off and thus the calories burned. (We now measure this energy in calories. Roughly speaking, one calorie is the heat required to raise the temperature of one kilogram of water by one degree Celsius.) Today, those ‘direct-heat’ calorimeters have largely been replaced by ‘indirect-heat’ systems, in which sensors measure oxygen intake and carbon dioxide exhalations. Scientists know how much energy is used during the metabolic processes that create the carbon dioxide we breathe out, so they can work backwards to deduce that, for example, a human who has exhaled 15 litres of carbon dioxide must have used 94 calories of energy. The facility’s three indirect calorimeters are down the halls from the research kitchen. “They’re basically nothing more than walk-in coolers, modified to allow people to live in here,” physiologist William Rumpler explains as he shows us around. Inside each white room, a single bed is folded up against the wall, alongside a toilet, sink, a small desk and chair, and a short treadmill. A couple of airlocks allow food, urine, faeces and blood samples to be passed back and forth. Apart from these reminders of the room’s purpose, the vinyl-floored, fluorescent-lit units resemble a 1970s dorm room. Rumpler explains that subjects typically spend 24 to 48 hours inside the calorimeter, following a highly structured schedule. A notice pinned to the door outlines the protocol for the latest study: 6:00 to 6:45pm – Dinner, 11:00pm – Latest bedtime, mandatory lights out, 11:00pm to 6:30am – Sleep, remain in bed even if not sleeping. In between meals, blood tests and bowel movements, calorimeter residents are asked to walk on the treadmill at 3 miles per hour for 30 minutes. They fill the rest of the day with what Rumpler calls “low activity”. “We encourage people to bring knitting or books to read,” he says. “If you give people free hand, you’ll be surprised by what they’ll do inside the chamber.” He tells us that one of his less cooperative subjects smuggled in a bag of M&Ms, and then gave himself away by dropping them on the floor. Using a bank of screens just outside the rooms, Rumpler can monitor exactly how many calories each subject is burning at any moment. Over the years, he and his colleagues have aggregated these individual results to arrive at numbers for general use: how many calories a 120-lb woman burns while running at 4.0 miles an hour, say, or the calories a sedentary man in his 60s needs to consume every day. It’s the averages derived from thousands of extremely precise measurements that provide the numbers in Bo Nash’s movement tracker and help Tara Haelle set a daily calorie intake target that is based on her height and weight. Measuring the calories in food itself relies on another modification of Lavoisier’s device. In 1848, an Irish chemist called Thomas Andrews realised that he could estimate calorie content by setting food on fire in a chamber and measuring the temperature change in the surrounding water. (Burning food is chemically similar to the ways in which our bodies break food down, despite being much faster and less controlled.) Versions of Andrews’s ‘bomb calorimeter’ are used to measure the calories in food today. At the Beltsville centre, samples of the meatloaf, mashed potatoes and tomato juice have been incinerated in the lab’s bomb calorimeter. “We freeze-dry it, crush into a powder, and fire it,” says Baer. Humans are not bomb calorimeters, of course, and we don’t extract every calorie from the food we eat. This problem was addressed at the end of the 19th century, in one of the more epic experiments in the history of nutrition science. Wilbur Atwater, a Department of Agriculture scientist, began by measuring the calories contained in more than 4,000 foods. Then he fed those foods to volunteers and collected their faeces, which he incinerated in a bomb calorimeter. After subtracting the energy measured in the faeces from that in the food, he arrived at the Atwater values, numbers that represent the available energy in each gram of protein, carbohydrate and fat. These century-old figures remain the basis for today’s standards. When Baer wants to know the calories per gram figure for that night’s meatloaf, he corrects the bomb calorimeter results using Atwater values. This entire enterprise, from the Beltsville facility to the numbers on the packets of the food we buy, creates an aura of scientific precision around the business of counting calories. That precision is illusory. The trouble begins at source, with the lists compiled by Atwater and others. Companies are allowed to incinerate freeze-dried pellets of product in a bomb calorimeter to arrive at calorie counts, though most avoid that hassle, says Marion Nestle. Some use the data developed by Atwater in the late 1800s. But the Food and Drug Administration (FDA) also allows companies to use a modified set of values, published by the Department of Agriculture in 1955, that take into account our ability to digest different foods in different ways. Atwater’s numbers say that Tara Haelle can extract 8.9 calories per gram of fat in a plate of her favourite Tex-Mex refried beans; the modified table shows that, thanks to the indigestibility of some of the plant fibres in legumes, she only gets 8.3 calories per gram. Depending on the calorie-measuring method that a company chooses – the FDA allows two more variations on the theme, for a total of five – a given serving of spaghetti can contain from 200 to 210 calories. These uncertainties can add up. Haelle and Bo Nash might deny themselves a snack or sweat out another few floors on the StairMaster to make sure they don’t go 100 calories over their daily limit. If the data in their calorie counts is wrong, they can go over regardless. There’s also the issue of serving size. After visiting over 40 US chain restaurants, including Olive Garden, Outback Steak House and PF Chang’s China Bistro, Susan Roberts of Tufts University’s nutrition research centre and colleagues discovered that a dish listed as having, say, 500 calories could contain 800 instead. The difference could easily have been caused, says Roberts, by local chefs heaping on extra french fries or pouring a dollop more sauce. It would be almost impossible for a calorie-counting dieter to accurately estimate their intake given this kind of variation. Even if the calorie counts themselves were accurate, dieters like Haelle and Nash would have to contend with the significant variations between the total calories in the food and the amount our bodies extract. These variations, which scientists have only recently started to understand, go beyond the inaccuracies in the numbers on the back of food packaging. In fact, the new research calls into question the validity of nutrition science’s core belief that a calorie is a calorie. Using the Beltsville facilities, for instance, Baer and his colleagues found that our bodies sometimes extract fewer calories than the number listed on the label. Participants in their studies absorbed around a third fewer calories from almonds than the modified Atwater values suggest. For walnuts, the difference was 21 per cent. This is good news for someone who is counting calories and likes to snack on almonds or walnuts: he or she is absorbing far fewer calories than expected. The difference, Baer suspects, is due to the nuts’ particular structure: “All the nutrients – the fat and the protein and things like that – they’re inside this plant cell wall.” Unless those walls are broken down – by processing, chewing or cooking – some of the calories remain off-limits to the body, and thus are excreted rather than absorbed. Another striking insight came from an attempt to eat like a chimp. In the early 1970s, Richard Wrangham, an anthropologist at Harvard University and author of the book Catching Fire: How cooking made us human, observed wild chimps in Africa. Wrangham attempted to follow the entirely raw diet he saw the animals eating, snacking only on fruit, seeds, leaves, and insects such as termites and army ants. “I discovered that it left me incredibly hungry,” he says. “And then I realised that every human eats their food cooked.” Wrangham and his colleagues have since shown that cooking unlaces microscopic structures that bind energy in foods, reducing the work our gut would otherwise have to do. It effectively outsources digestion to ovens and frying pans. Wrangham found that mice fed raw peanuts, for instance, lost significantly more weight than mice fed the equivalent amount of roasted peanut butter. The same effect holds true for meat: there are many more usable calories in a burger than in steak tartare. Different cooking methods matter, too. In 2015, Sri Lankan scientists discovered that they could more than halve the available calories in rice by adding coconut oil during cooking and then cooling the rice in the refrigerator. Wrangham’s findings have significant consequences for dieters. If Nash likes his porterhouse steak bloody, for example, he will likely be consuming several hundred calories less than if he has it well-done. Yet the FDA’s methods for creating a nutrition label do not for the most part account for the differences between raw and cooked food, or pureed versus whole, let alone the structure of plant versus animal cells. A steak is a steak, as far as the FDA is concerned. Industrial food processing, which subjects foods to extremely high temperatures and pressures, might be freeing up even more calories. The food industry, says Wrangham, has been “increasingly turning our food to mush, to the maximum calories you can get out of it. Which, of course, is all very ironic, because in the West there’s tremendous pressure to reduce the number of calories you’re getting out of your food.” He expects to find examples of structural differences that affect caloric availability in many more foods. “I think there is work here for hundreds and probably thousands of nutritionists for years,” he says. There’s also the problem that no two people are identical. Differences in height, body fat, liver size, levels of the stress hormone cortisol, and other factors influence the energy required to maintain the body’s basic functions. Between two people of the same sex, weight and age, this number may differ by up to 600 calories a day – over a quarter of the recommended intake for a moderately active woman. Even something as seemingly insignificant as the time at which we eat may affect how we process energy. In one recent study, researchers found that mice fed a high-fat diet between 9am and 5pm gained 28 per cent less weight than mice fed the exact same food across a 24-hour period. The researchers suggested that irregular feedings affect the circadian cycle of the liver and the way it metabolises food, thus influencing overall energy balance. Such differences would not emerge under the feeding schedules in the Beltsville experiments. Until recently, the idea that genetics plays a significant role in obesity had some traction: researchers hypothesised that evolutionary pressures may have favoured genes that predisposed some people to hold on to more calories in the form of added fat. Today, however, most scientists believe we can’t blame DNA for making us overweight. “The prevalence of obesity started to rise quite sharply in the 1980s,” says Nestle. “Genetics did not change in that ten- or twenty-year period. So genetics can only account for part of it.” Instead, researchers are beginning to attribute much of the variation to the trillions of tiny creatures that line the coiled tubes inside our midriffs. The microbes in our intestines digest some of the tough or fibrous matter that our stomachs cannot break down, releasing a flow of additional calories in the process. But different species and strains of microbes vary in how effective they are at releasing those extra calories, as well as how generously they share them with their host human. In 2013, researchers in Jeffrey Gordon’s lab at Washington University tracked down pairs of twins of whom one was obese and one lean. He took gut microbes from each, and inserted them into the intestines of microbe-free mice. Mice that got microbes from an obese twin gained weight; the others remained lean, despite eating the exact same diet. “That was really striking,” said Peter Turnbaugh, who used to work with Gordon and now heads his own lab at the University of California, San Francisco. “It suggested for the first time that these microbes might actually be contributing to the energy that we gain from our diet.” The diversity of microbes that each of us hosts is as individual as a fingerprint and yet easily transformed by diet and our environment. And though it is poorly understood, new findings about how our gut microbes affect our overall energy balance are emerging almost daily. For example, it seems that medications that are known to cause weight gain might be doing so by modifying the populations of microbes in our gut. In November 2015, researchers showed that risperidone, an antipsychotic drug, altered the gut microbes of mice who received it. The microbial changes slowed the animals’ resting metabolisms, causing them to increase their body mass by 10 per cent in two months. The authors liken the effects to a 30-lb weight gain over one year for an average human, which they say would be the equivalent of an extra cheeseburger every day. Other evidence suggests that gut microbes might affect weight gain in humans as they do in lab animals. Take the case of the woman who gained more than 40 lbs after receiving a transplant of gut microbes from her overweight teenage daughter. The transplant successfully treated the mother’s intestinal infection of Clostridium difficile, which had resisted antibiotics. But, as of the study’s publication last year, she hadn’t been able to shed the excess weight through diet or exercise. The only aspect of her physiology that had changed was her gut microbes. All of these factors introduce a disturbingly large margin of error for an individual who is trying, like Nash, Haelle and millions of others, to count calories. The discrepancies between the number on the label and the calories that are actually available in our food, combined with individual variations in how we metabolise that food, can add up to much more than the 200 calories a day that nutritionists often advise cutting in order to lose weight. Nash and Haelle can do everything right and still not lose weight. None of this means that the calorie is a useless concept. Inaccurate as they are, calorie counts remain a helpful guide to relative energy values: standing burns more calories than sitting; cookies contain more calories than spinach. But the calorie is broken in many ways, and there’s a strong case to be made for moving our food accounting system away from that one particular number. It’s time to take a more holistic look at what we eat. Wilbur Atwater worked in a world with different problems. At the beginning of the 20th century, nutritionists wanted to ensure people were well fed. The calorie was a useful way to quantify a person’s needs. Today, excess weight affects more people than hunger; 1.9 billion adults around the world are considered overweight, 600 million of them obese. Obesity brings with it a higher risk of diabetes, heart disease and cancer. This is a new challenge, and it is likely to require a new metric. One option is to focus on something other than energy intake. Like satiety, for instance. Picture a 300-calorie slice of cheesecake: it is going to be small. “So you’re going to feel very dissatisfied with that meal,” says Susan Roberts. If you eat 300 calories of a chicken salad instead, with nuts, olive oil and roasted vegetables, “you’ve got a lot of different nutrients that are hitting all the signals quite nicely,” she says. “So you’re going to feel full after you’ve eaten it. That fullness is going to last for several hours.” As a result of her research, Roberts has created a weight-loss plan that focuses on satiety rather than a straight calorie count. The idea is that foods that help people feel satisfied and full for longer should prevent them from overeating at lunch or searching for a snack soon after cleaning the table. Whole apples, white fish and Greek yoghurt are on her list of the best foods for keeping hunger at bay. There’s evidence to back up this idea: in one study, Roberts and colleagues found that people lost three times more weight by following her satiety plan compared with a traditional calorie-based one – and kept it off. Harvard nutritionist David Ludwig, who also proposes evaluating food on the basis of satiety instead of calories, has shown that teens given instant oats for breakfast consumed 650 more calories at lunch than their peers who were given the same number of breakfast calories in the form of a more satisfying omelette and fruit. Meanwhile, Adam Drewnowski, a epidemiologist at the University of Washington, has his own calorie upgrade: a nutrient density score. This system ranks food in terms of nutrition per calorie, rather than simply overall caloric value. Dark green vegetables and legumes score highly. Though the details of their approaches differ, all three agree: changing how we measure our food can transform our relationship with it for the better. Individual consumers could start using these ideas now. But persuading the food industry and its watchdogs, such as the FDA, to adopt an entirely new labelling system based on one of these alternative measures is much more of a challenge. Consumers are unlikely to see the calorie replaced by Roberts’s or Drewnowski’s units on their labels any time soon; nonetheless, this work is an important reminder that there are other ways to measure food, ones that might be more useful for both weight loss and overall health. Down the line, another approach might eventually prove even more useful: personalised nutrition. Since 2005, David Wishart of the University of Alberta has been cataloguing the hundreds of thousands of chemical compounds in our bodies, which make up what’s known as the human metabolome. There are now 42,000 chemicals on his list, and many of them help digest the food we eat. His food metabolome database is a more recent effort: it contains about 30,000 chemicals derived directly from food. Wishart estimates that both databases may end up listing more than a million compounds. “Humans eat an incredible variety of foods,” he says. “Then those are all transformed by our body. And they’re turned into all kinds of other compounds.” We have no idea what they all are, he adds – or what they do. According to Wishart, these chemicals and their interactions affect energy balance. He points to research demonstrating that high-fructose corn syrup and other forms of added fructose (as opposed to fructose found in fruit) can trigger the creation of compounds that lead us to form an excess of fat cells, unrelated to additional calorie consumption. “If we cut back on some of these things,” he says, “it seems to revert our body back to more appropriate, arguably less efficient metabolism, so that we aren’t accumulating fat cells in our body.” It increasingly seems that there are significant variations in the way each one of us metabolises food, based on the tens of thousands – perhaps millions – of chemicals that make up each of our metabolomes. This, in combination with the individuality of each person’s gut microbiome, could lead to the development of personalised dietary recommendations. Wishart imagines a future where you could hold up your smartphone, snap a picture of a dish, and receive a verdict on how that food will affect you as well as how many calories you’ll extract from it. Your partner might receive completely different information from the same dish. Or maybe the focus will shift to tweaking your microbial community: if you’re trying to lose weight, perhaps you will curate your gut microbiome so as to extract fewer calories without harming your overall health. Peter Turnbaugh cautions that the science is not yet able to recommend a particular set of microbes, let alone how best to get them inside your gut, but he takes comfort from the fact that our microbial populations are “very plastic and very malleable” – we already know that they change when we take antibiotics, when we travel and when we eat different foods. “If we’re able to figure this out,” he says, “there is the chance that someday you might be able to tailor your microbiome” to get the outcomes you want. None of these alternatives is ready to replace the calorie tomorrow. Yet the need for a new system of food accounting is clear. Just ask Haelle. “I’m kind of pissed at the scientific community for not coming up with something better for us,” she confesses, recalling a recent meltdown at TGI Friday’s as she navigated a confusing datasheet to find a low-calorie dish she could eat. There should be a better metric for people like her and Nash – people who know the health risks that come with being overweight and work hard to counter them. And it’s likely there will be. Science has already shown that the calorie is broken. Now it has to find a replacement.
Mar 01, 2021 DietHobby: A Digital Scrapbook. 2000+ Blogs and 500+ Videos in DietHobby reflect my personal experience in weight-loss and maintenance. One-size-doesn't-fit-all, and I address many ways-of-eating whenever they become interesting or applicable to me.
Jun 01, 2020 DietHobby is my Personal Blog Website. DietHobby sells nothing; posts no advertisements; accepts no contributions. It does not recommend or endorse any specific diets, ways-of-eating, lifestyles, supplements, foods, products, activities, or memberships.
May 01, 2017 DietHobby is Mobile-Friendly. Technical changes! It is now easier to view DietHobby on iPhones and other mobile devices.