Weighing in Public
- POSTED ON: Mar 24, 2013

 It's probably not a great idea to weigh in front of others.


What To DO?
- POSTED ON: Mar 23, 2013


Activities, especially the ones we find unpleasant or painful, that don’t yield a positive return to us individually, are counter productive. Acts such as reducing sodium, eating “organic”, or “exercising daily” can sometimes actually prevent a person from creating a healthy lifestyle for themselves.

Hate running? Then don’t run. Don’t like giving up pizza? Then figure out a way to fit it into your diet. Don’t like salads? Then don’t eat them.

So what would be a successful strategy for weight loss?
Choose the most painless, most effective way-of-eating possible, for you personally.

It’s foolish to force one’s own fitness or nutritional ideologies on others. Many people treat fitness and nutrition as though these issues are a Religion and try to push their own preferences on to other people.

Perhaps the Paleo diet worked very well for you. That doesn’t mean that it will work for someone who feels horrible on low carbs or loves bread.

Perhaps limiting all eating to three or less mealtimes a day feels “natural” to you. That doesn’t mean eating in that manner will be effective for those who greatly value daily snacks, or for those who have a strong personal preference for eating a larger number of mini-meals daily.

Perhaps it’s easier for you to restrict the amount of your food intake by establishing a pattern of skipping meals or fasting a few days each week. That doesn’t mean that an eating/fasting pattern is workable or desirable for everyone.

If you find a diet that works for you, congratulations! It’s okay to recommend this diet to your friends, but don’t turn it into Nutritional Dogma. Just be thankful that you’ve found a good strategy and move on with your life.

Saying that there is only one way to eat is the same thing as saying that everyone shares a common heritage, comes from the same cultural background, and has the same personal preferences. People are different. We are not all the same.


If it Involves Eating, It's a Diet
- POSTED ON: Mar 22, 2013

 

Here is a recent Quote by a member of a forum that I frequent.


(The article posted below) “supports what some say, and I contend,
about dieting for MOST--not all --. And by dieting I mean a purposeful restriction of foods and amounts to match a target low intake and weight goal.

It certainly doesn't mean that reducing the number of calories won't result in some weight loss. It will. The point is that as a strategy it has not been shown to change permanent habits in most who try it. Worse, it distorts the process so that weight gain statistically follows.

You can argue until you're blue in the face that it will work, but if it thwarts the natural process for most, I call that a strategy meant for the few. And the stats show it. Not for those who make it- for those who don't. Which is most.”


My response to this quote, and to the Article I've posted below is:

Everything that has to do with eating or not eating food is a Diet.

Eating LESS than the body uses as energy is a “weight-loss diet”
Eating the SAME food that the body uses as energy is a “maintenance” diet.
Eating MORE food than the body uses as energy is a “weight-gain” diet.

Some Diets are more easily incorporated into the lifestyles of Some People than other Diets.
Labeling any type of eating (but especially a plan to eat less) "not a diet"
or a “non diet” is just a Semantic Game.

No matter what the "Diet"... "eating plan" .... "way-of-eating" .... "lifestyle",
it is difficult to lose weight, and even more difficult to maintain weight-loss.

I've been saying this here at DietHobby and other online places for quite some time,
and the article below supports this.  

This is my personal experience, and
I've been researching and writing about this for quite some time.
Some of the writings that support this principle can be found at the Links below:


Rethinking Thin: The New Science of Weight Loss---and the Myths and Realities of Dieting (2008) by Gina Kolata.

No Cure

Effort Shock

Science Has Failed

The Fat Trap

The Fat Trap - Follow-up

The Chubby Side of Normal

Set Point

Do Diets Work?

The only "conventional wisdom" that's really "changed"
in the 6 years since the writing of this 2007 article posted below,
is that recent studies have indicated that exercise does very little to help one lose weight;
that exercise might be helpful in maintaining weight-loss;
however, that exercise leads to better physical and mental health.


Dieting Does Not Work, UCLA Researchers Report
                    by Stuart Wolpert - April 03, 2007 - UCLA News

Will you lose weight and keep it off if you diet? No, probably not, UCLA researchers report in the April issue of American Psychologist, the journal of the American Psychological Association.

"You can initially lose 5 to 10 percent of your weight on any number of diets, but then the weight comes back," said Traci Mann, UCLA associate professor of psychology and lead author of the study. "We found that the majority of people regained all the weight, plus more. Sustained weight loss was found only in a small minority of participants, while complete weight regain was found in the majority. Diets do not lead to sustained weight loss or health benefits for the majority of people."

Mann and her co-authors conducted the most comprehensive and rigorous analysis of diet studies, analyzing 31 long-term studies.

"What happens to people on diets in the long run?" Mann asked. "Would they have been better off to not go on a diet at all? We decided to dig up and analyze every study that followed people on diets for two to five years. We concluded most of them would have been better off not going on the diet at all. Their weight would be pretty much the same, and their bodies would not suffer the wear and tear from losing weight and gaining it all back."

People on diets typically lose 5 to 10 percent of their starting weight in the first six months, the researchers found. However, at least one-third to two-thirds of people on diets regain more weight than they lost within four or five years, and the true number may well be significantly higher, they said.

"Although the findings reported give a bleak picture of the effectiveness of diets, there are reasons why the actual effectiveness of diets is even worse," Mann said.

Mann said that certain factors biased the diet studies to make them appear more effective than they really were. For one, many participants self-reported their weight by phone or mail rather than having their weight measured on a scale by an impartial source. Also, the studies have very low follow-up rates — eight of the studies had follow-up rates lower than 50 percent, and those who responded may not have been representative of the entire group, since people who gain back large amounts of weight are generally unlikely to show up for follow-up tests, Mann said.

"Several studies indicate that dieting is actually a consistent predictor of future weight gain," said Janet Tomiyama, a UCLA graduate student of psychology and co-author of the study. One study found that both men and women who participated in formal weight-loss programs gained significantly more weight over a two-year period than those who had not participated in a weight-loss program, she said.

Another study, which examined a variety of lifestyle factors and their relationship to changes in weight in more than 19,000 healthy older men over a four-year period, found that "one of the best predictors of weight gain over the four years was having lost weight on a diet at some point during the years before the study started," Tomiyama said. In several studies, people in control groups who did not diet were not that much worse off — and in many cases were better off — than those who did diet, she said.

If dieting doesn't work, what does?

"Eating in moderation is a good idea for everybody, and so is regular exercise," Mann said. "That is not what we looked at in this study. Exercise may well be the key factor leading to sustained weight loss. Studies consistently find that people who reported the most exercise also had the most weight loss."

Diet studies of less than two years are too short to show whether dieters have regained the weight they lost, Mann said.

"Even when you follow dieters four years, they're still regaining weight," she said.

One study of dieting obese patients followed them for varying lengths of time. Among those who were followed for fewer than two years, 23 percent gained back more weight than they had lost, while of those who were followed for at least two years, 83 percent gained back more weight than they had lost, Mann said. One study found that 50 percent of dieters weighed more than 11 pounds over their starting weight five years after the diet, she said.

Evidence suggests that repeatedly losing and gaining weight is linked to cardiovascular disease, stroke, diabetes and altered immune function. Mann and Tomiyama recommend that more research be conducted on the health effects of losing and gaining weight, noting that scientists do not fully understand how such weight cycling leads to adverse health effects.

Mann notes that her mother has tried different diets, and has not succeeded in keeping the weight off. "My mother has been on diets and says what we are saying is obvious," she said.

While the researchers analyzed 31 dieting studies, they have not evaluated specific diets.
Medicare raised the issue of whether obesity is an illness, deleting the words "Obesity is not considered an illness" from its coverage regulations in 2004. The move may open the door for Medicare to consider funding treatments for obesity, Mann noted.

"Diets are not effective in treating obesity," said Mann. "We are recommending that Medicare should not fund weight-loss programs as a treatment for obesity. The benefits of dieting are too small and the potential harm is too large for dieting to be recommended as a safe, effective treatment for obesity."

From 1980 to 2000, the percentage of Americans who were obese more than doubled, from 15 percent to 31 percent of the population, Mann noted.

A social psychologist, Mann, taught a UCLA graduate seminar on the psychology of eating four years ago. She and her students continued the research when the course ended. Mann's co-authors are Erika Westling, Ann-Marie Lew, Barbra Samuels and Jason Chatman.

"We asked what evidence is there that dieting works in the long term, and found that the evidence shows the opposite" Tomiyama said.

The research was partially supported by the National Institute of Mental Health.

In future research, Mann is interested in studying whether a combination of diet and exercise is more effective than exercise alone.


UCLA is California's largest university, with an enrollment of nearly 37,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 300 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Four alumni and five faculty have been awarded the Nobel Prize.

Before drawing a conclusion that Diets are negative because they cause Weight-Gain,
it is important to remember that there is a
Difference between Causation and Correlation.
See Linked article.

Just because Fat People and Dieting are Associated,
doesn’t mean that Dieting Causes People to be fat.


More About Calories
- POSTED ON: Mar 21, 2013

For the past eight-and-a-half years I’ve entered all of my daily food into a computer program that tells me the micronutrients in that food, including calories. The computer program that I choose to use is called DietPower.

I’ve written quite a lot about calories, including the impossibility of achieving a totally accurate calorie count. Below are links to two of those articles:

Do Calories Matter?

Calorie Detective – Lying Food Labels

A calorie is simply a measurement of energy, the amount of heat that something gives off through chemical processes. This is an “inexact” scientific concept which has been simplified for general use. Although there is nothing “perfectly accurate” about a calorie measurement, at this time there doesn’t appear to be an alternative way for Science to better measure the potential energy which is contained inside foods.

For me, “counting calories” is personally helpful as a “general” measuring tool,
while understanding that:

  • All bodies are not the same.

  • It is important not to put too much Faith into the exact calorie numbers that “Experts” SAY one’s body burns.

  • It is important not to put too much Faith into the exact calorie numbers allegedly contained in any food item.

 

 

Even though it is true that our bodies process different macronutrients differently, … at the end of the day… it still remains that if a body consumes more energy than a body expends, it will accumulate fat.

The article below states the Paleo / Low-Carb position against using calories as a food measurement tool, which is basically: “The concept of the “calorie”, as applied to nutrition, is an oversimplification so extreme as to be untrue in practice.”

 

There Is No Such Thing As A “Calorie” (To Your Body)
           by J. Stanton, online Paleo blogger, 
                author of The Gnoll Credo (2010)  (science fiction fantasy about primitive man)

A friend of mine once said “The problem with explaining complicated systems to the layman is this: it’s easy to simplify a concept to the point that that it’s no longer true.

To that end, I submit the following hypothesis:

The concept of the “calorie”, as applied to nutrition, is an oversimplification so extreme as to be untrue in practice.

What Is A “Calorie”, Anyway?

The dietary calorie is defined as “the amount of energy required to increase the temperature of 1 kilogram of water by 1 degree Kelvin.”

The dietary calorie is actually a “kilocalorie” = 1000 calories, which is why you’ll occasionally see it abbreviated as “kcal”.

It’s an obsolete unit: the “joule” is the modern unit of energy. There are 4.184 joules in a calorie, and 4184 in a dietary calorie (kilocalorie).

Problem: Our Bodies Don’t Use “Calories”

You may already see the problem here: a “calorie” is a unit of energy transfer. We determine the number of “calories” in a food by, quite literally, burning it and measuring how much heat it generates.

This is a bomb calorimeter. Note: not equivalent to the human digestive and metabolic system.

Unfortunately, our bodies are not steam engines! They do not burn the food we eat in a fire and convert the heat into mechanical work. Thus:

There is no biochemical system in our bodies whose input is a “calorie”.

Every metabolic pathway in our body starts with a specific molecule (or family of molecules), and converts it into another molecule—usually consuming energy in the process, not producing it.

This is why we must eat food in order to stay alive. The chemical reactions that build and repair each one of the trillions of cells in our bodies, from brain to toe, from eye to pancreas, require both energy and raw materials. The chemical reactions that allow our cells to perform their necessary functions, from transporting oxygen to parsing visual input to generating muscular force to manufacturing mucus and bile and stomach acid and insulin and leptin and T3, require both energy and raw materials. And the chemical reactions that allow our cells to communicate, via hormones and neurotransmitters, require both energy and raw materials.

In summary, the food we eat has many possible fates. Here are the major ones:

  • Food can be used to build and repair our tissues, both cellular (e.g. muscles, skin, nerves) and acellular (e.g. hair, collagen, bone mineral).

  • It can be used to build enzymes, cofactors, hormones, and other molecules necessary for cellular function and communication.

  • It can be used to build bile, stomach acid, mucus, and other necessary secretions, both internal and external.

  • It can be used by gut bacteria to keep themselves alive, and the waste products of its metabolism can meet any of the other fates listed here.

  • It can fail to be digested or absorbed, and be excreted partially or completely unused.

  • It can be converted to a form in which it can be stored for future use, such as glycogen or fat.

  • It can be transported to an individual cell that takes it in, and converts it to energy, in order to perform the above tasks.

Note that only the last of these fates—immediate conversion to energy—even approximates the definition of a dietary “calorie”.

Why “Calories In, Calories Out” Is A Radical Oversimplification

By now, the problem with “calories in, calories out” should be obvious:

The fate of a “calorie” of food depends completely on its specific molecular composition, the composition of the foods accompanying it, and how those molecules interact with our current metabolic and nutritional state.

Note that “our current metabolic and nutritional state” is the definition of satiety, as I explain in my ongoing article series “Why Are We Hungry?”, and in my 2012 AHS presentation.

Did you just have an epiphany? I hope so.

So What Matters, If Not “Calories”?

Of the possible fates I listed above, only one is wholly undesirable…storage as fat.


I speak from the modern, First World point of view, in which obesity and the metabolic syndrome are more common health problems than starvation.


And while space does not permit a full exploration of all the possible fates of an ingested “calorie” (it’s called a “biochemistry textbook”), I will give a few examples.

A Few Possible Fates Of A “Calorie”: Protein

Imagine a molecule of “protein”.

Proteins are made up of chains of amino acids. (Learn more about proteins and their structure here.) Some proteins, such as meat, are readily digested and absorbed. Some are poorly digestible, such as the prolamins found in grains like wheat and corn, and part of them will either feed gut bacteria or be excreted. Then, once protein is absorbed, its composition of amino acids determines how much of the protein we can use to build and repair (the first three fates in the list above), and how much must be burned for energy or excreted.


The amino acid composition of grains is different than what our bodies need, since the metabolic needs of a grass seed are very different than the metabolic needs of a human being. That’s why grains score so low on measures of protein quality, such as the PDCAAS, compared to meat and eggs. (Grains score 0.25-0.4, versus approximately 1.0 for all animal-source proteins.)


But even if the protein is perfectly digested, absorbed, and of high quality, that is no guarantee of its fate! If we’ve already absorbed enough complete protein for our body’s needs, additional protein will still be converted to glucose, burned for energy, or excreted, no matter how high its quality. (Our bodies have no dedicated storage reservoir for protein…the process of muscle-building is very slow, and only occurs when stimulated by the right kinds of exercise.)

So, right away we can see that a “calorie” of meat protein that is digested, absorbed, and used to build or repair our bodies is not equal to a “calorie” of meat protein surplus to our needs. Nor is it equal to a “calorie” of wheat protein that is only partially digested, poorly absorbed, and disruptive to the digestive tract itself! (e.g. Fasano 2011)

A Few Possible Fates Of A “Calorie”: Fructose

(Again, space does not permit a full exploration of all possible fates of all possible types of “calories”, so these explanations will be somewhat simplified.)

Imagine a molecule of fructose.

Under ideal conditions, fructose is shunted immediately to the liver, where it is converted into glycogen and stored for future use. However, fructose has many other possible fates, all bad. It can fail to be absorbed, whereupon it will feed gut bacteria—a process that can cause SIBO, and consequent acid reflux, when continued to excess. If our liver is already full of glycogen, fructose is converted to fat—a process strongly implicated in NAFLD and visceral obesity. And when our liver is overloaded with fructose (or alcohol, which uses part of the same metabolic pathway), it can remain in circulation, where it can react with proteins or fats to form AGEs (advanced glycation endproducts), useless and/or toxic pro-inflammatory molecules which must be filtered out by the liver.


A typical Big Gulp contains over 100 grams of HFCS. Even the typical “healthy” fruit smoothie contains over 90 grams of high-fructose fruit sugar!

An adult liver can only store, at most, 100-120g of glycogen…and our bodies never let it become deeply depleted.

The problem here should be obvious.


Now ask yourself: which of the above fates has any meaning relative to the definition of a “calorie”?

A Few Possible Fates Of A “Calorie”: Starch

I can’t possibly explore all the fates of starch, but here are some common ones.

Starch is made of glucose molecules chained together. Upon digestion, it’s broken down into these individual glucose molecules, and absorbed—usually reasonably well, unlike fructose (though certain forms, called “resistant starch”, are indigestible and end up being used for energy by our gut bacteria).

Once glucose enters our bloodstream, its fate depends on a host of metabolic and nutritional factors. Ideally, because high blood glucose is toxic, our muscles and liver are not already full of glycogen, and insulin will quickly force it into one of them, whereupon it will be stored as glycogen and used as needed. Our brain and red blood cells also need glucose, since they can’t run on fat, and if they’re low on energy they can burn it too.

Unfortunately, as we’ve seen, our liver has a very small storage capacity, and the capacity of our muscles isn’t very large either—1-2% of muscle mass.


A 155 pound (70 kilo) adult at 14% bodyfat will contain about 66 pounds (30 kg) of muscle, leaving him with 300-600 grams of glycogen storage, depending on his level of training. (Source.)

Note that only reasonably intense exercise (> 50% VO2max) significantly depletes muscle glycogen, and only from the muscles used to perform the effort. Also note that the mainstream recommendation of 50-60% of daily “calories” from carbohydrate equals 300g-360g for a 2400 “calorie” diet.

Again, the problem here should be obvious.


Then, our cells will try to switch over to burning the surplus of available glucose, instead of burning fat for energy.


People with impaired metabolic flexibility have a problem switching between glucose and fat metabolism, for reasons that are still being investigated.

This is yet another example of how our nutritional and metabolic state affects the fate of a “calorie”; why a “calorie” of fat and a “calorie” of sugar are not equivalent in any sane sense of the word; and why different people respond differently to the same number and composition of “calories”.


Next, our body will try to “rev up” our basal metabolic rate in order to burn off the excess glucose…if sufficient cofactors such as T3 are available, and if our metabolic flexibility isn’t impaired. And a continued surplus will be (slowly) converted to fat in either the liver or in fat cells…but if it remains in circulation, it can react with proteins or fats to form AGEs (though more slowly than fructose).


Note that these proteins and fats can be part of living tissues: neuropathy, blindness, and all the complications of diabetes are consequences of excessively high blood sugar over the long term.


Are you starting to understand why the concept of a “calorie” is so oversimplified as to be effectively meaningless?


A Few Possible Fates Of A “Calorie”: Fat

Explaining all possible fates of all possible fats, even cursorily, would require an even longer section than the above two! However, I trust my point is clear: the fate of dietary linoleic acid differs from the the fate of DHA, the fate of palmitic acid, or the fate of butyrate, and their effects on our nutritional and metabolic state will also differ.

But Wait, There’s More

I also don’t have time or space to explore the following important factors:

  • Energy loss when food is converted to different forms of storage (e.g. gluconeogenesis, glycogenesis, lipogenesis) or retrieved from storage

  • How different types and quantities of dietary protein, fat, and carbohydrate affect our hormonal and metabolic environment

  • How the fate of a “calorie” depends on the composition of the other foods it’s eaten with

  • How different types and quantities of food, as well as our nutritional and metabolic state (our satiety), affect our perception of hunger

  • The host of known, measurable differences between individuals, such as MTHFR genes, the respiratory quotient, and the bewildering variety of hormones on the HPTA axis.


Conclusion: The Concept Of A “Calorie” Is So Oversimplified As To Be Meaningless

Let’s recap some of the possible fates of a “calorie”:

  • Food can be used to build and repair our tissues, both cellular (e.g. muscles, skin, nerves) and acellular (e.g. hair, collagen, bone mineral).

  • It can be used to build enzymes, cofactors, hormones, and other molecules necessary for cellular function and communication.

  • It can be used to build bile, stomach acid, mucus, and other necessary secretions, both internal and external.

  • It can be used by gut bacteria to keep themselves alive, and the waste products of its metabolism can meet any of the other fates listed here.

  • It can fail to be digested or absorbed, and be excreted partially or completely unused.

  • It can be converted to a form in which it can be stored for future use, such as glycogen or fat.

  • It can be transported to an individual cell that takes it in, and converts it to energy, in order to perform the above tasks.


Note that only the last of these fates—immediate conversion to energy—even approximates the definition of a dietary “calorie”.

I hope it is now clear that the fate of a “calorie” depends on a bewildering host of factors, including our current nutritional and metabolic state (our satiety), the composition of the other foods it’s eaten with; our biochemical individuality, both genetic and environmental; and much more.

Takeaways

  • There is no biochemical system in our bodies whose input is a “calorie”.

  • The food we eat has many possible fates, only one of which approximates the definition of a dietary “calorie”.

  • The fate of a “calorie” of food depends completely on its specific molecular composition, the composition of the foods accompanying it, and how those molecules interact with our current metabolic and nutritional state—our satiety.

  • Therefore, the concept of the “calorie”, as applied to nutrition, is an oversimplification so extreme as to be untrue in practice.

  • Therefore, the concept of “calories in, calories out”, or CICO, is also unhelpful in practice.

  • The health-supporting fates of food involve being used as raw materials to build and repair tissues; to build enzymes, cofactors, and hormones; to build bile, mucus, and other necessary secretions; to support “good” gut bacteria, while discouraging “bad” bacteria; and, once all those needs are taken care of, providing energy sufficient to perform those tasks (but no more).

  • Therefore, we should eat foods which are made of the raw materials we need to perform and support the above functions.

  • Biochemical individuality means that the optimum diet for different people will differ—as will their tolerance for suboptimal diets.

  • However, eating like a predator—a diet based on meat, fish, shellfish, vegetables and fruit in season, and just enough starch to support your level of physical activity—is an excellent starting point.

 

The author of this article is J. Stanton, who is an online Paleo blogger, and the author of The Gnoll Credo (2010) which is a science fiction fantasy about primitive man.

I've been unable to discover information about J. Stanton’s education or any indication that he has any professional credentials. At present, no bio exists on his blog, and his biography as posted on Amazon is quoted below:


"J. Stanton has written and published home and arcade video games, rock, electronic, and tribal music, automobile reviews, US and foreign patents, business plans, political campaign websites, and advertising copy. He spends much of his time ascending and descending mountains on skis, on bicycles, and on foot."


 I’ve enjoyed reading past nutritional articles in J. Stanton’s blog at www gnolls.org, and a year or so ago I got his book, The Gnoll Credo (2010) from Amazon. Although I do read a great many books, enjoy reading, and have read lots of science fiction, this book did not hold my interest. I’ve not yet been able to force myself to read beyond the first few pages. Perhaps I’m too civilized or perhaps the plot is too much of a “boy” thing for me. However, I do own the book, and someday, I might choose to finish reading it.


Building New Habits
- POSTED ON: Mar 20, 2013


 




I've previously posted articles about:
Breaking Bad Habits and how it takes MORE
than 21 Days to Form a Habit.


Here’s one about Building New Habits.


Read This If You're Trying to Cultivate a New Habit 
                       by Yoni Freedhoff, M.D. – www. weightymatters


People talk about cultivating new habits all the time. While I've busted the 3 weeks myth over on US News and World Report, thinking on habits led me to ponder flossing.

Flossing is easy, cheap, quick and good for you. And I'd bet there are truly large numbers of people out there who despite on occasion going through spurts of months of regular flossing, fall off the flossing wagon.

Why?

Because flossing fails to fall into the two categories of things that truly allow us to form "habits". Those two categories are easy to define. There are those things we actually enjoy doing and those things we simply must do.

For the actually enjoy category it's certainly not difficult to sustain those behaviours and often this category includes behaviours that may not be "good" for us like snacking on junky yummy food, after dinner drinks, favourite show watching, obsessive social network checking, etc.

The must do category on the other hand, that'll include things that we might not honestly enjoy, but things we simply don't have a choice but to do, and might include: getting up each week day to go to work or school, cleaning up after our kids, etc.

Flossing?

Not sure there's anyone out there who'd say that they "enjoy" flossing, and certainly there's no truly immediate repercussions of not doing it to suggest it must be done, which may well be why in my own life, despite having had 6 month or longer stretches of daily flossing, I've also had those stretches end for no particularly good reason - this despite the fact that I'd been doing it for quite a long time, long enough that I might have thought it was a "habit".

If you're aiming to improve upon your lifestyle, diet or health, your best bet is to try to find a way to truly enjoy your desired change, or more likely, convince yourself that it is something you simply "have" to do (for instance I am not a natural lover of exercise, but I've convinced myself it's something I have to do - both in the context of walking my talk, and also in the context of setting a good example for my children), because otherwise, just like flossing, what might feel like a truly established habit can disappear in a flash....until of course the week before your next dentist appointment.


<< Previous Page | Page 1 | Page 2 | Page 3 | Page 4 | Page 5 | Next Page >> Oldest >>
Search Blogs
 
DietHobby is a Digital Scrapbook of my personal experience in weight-loss-and-maintenance. One-size-doesn't-fit-all. Every diet works for Someone, but no diet works for Everyone.
BLOG ARCHIVES
- View 2021
- View 2020
- View 2019
- View 2018
- View 2017
- View 2016
- View 2015
- View 2014
- View 2013
- View 2012
- View 2011
NEWS & ANNOUNCEMENTS

Mar 01, 2021
DietHobby: A Digital Scrapbook.
2000+ Blogs and 500+ Videos in DietHobby reflect my personal experience in weight-loss and maintenance. One-size-doesn't-fit-all, and I address many ways-of-eating whenever they become interesting or applicable to me.

Jun 01, 2020
DietHobby is my Personal Blog Website.
DietHobby sells nothing; posts no advertisements; accepts no contributions. It does not recommend or endorse any specific diets, ways-of-eating, lifestyles, supplements, foods, products, activities, or memberships.

May 01, 2017
DietHobby is Mobile-Friendly.
Technical changes! It is now easier to view DietHobby on iPhones and other mobile devices.